B.Sc. 3rd Semester (Honours) Examination, 2020-2021 CHEMISTRY

Course ID: 31411

Course Code: UG/CHEM/301/C-5

Course Title: Physical Chemistry-II

Time: 1 Hour 15 Minutes

Full Marks: 25

The figures in the right hand side margin indicate marks.
Candidates are required to give their answers in their own words as far as practicable.

1. Answer any five questions of the following:
(a) Explain why the viscosity of ethyl alcohol is greater than that of ether?
(b) Cite two advantages of conductometric titration.
(c) What is the unit of fugacity coefficient?
(d) Plot variation of chemical potential with pressure for three states of a substance.
(e) Write the expression of distribution coefficient when the solute undergoes dimerization in one layer.
(f) Indicate which of the following operator is linear operator?
$\begin{array}{ll}\text { (i) } \frac{d}{d x} & \text { (ii) } \sin \end{array}$
(g) Mention the experiments which demonstrate the particle and wave nature of electron.
(h) What happens to the photoelectrons when intensity of the incident light is doubled?
2. Answer any two questions of the following: $5 \times 2=10$
(a) Define viscosity coefficient. What is its dimension? Write down the Poiseuille's equation. Show how the time of flow of a liquid in a viscometer will change when the radius of the capillary is doubled?

$$
1+1+1+2=5
$$

(b) Show that the yield of NH_{3} is maximum when the ratio of $\mathrm{N}_{2} \& \mathrm{H}_{2}$ is1:3. Show a graphical plot of the free energy G of a reacting system against the degree of advancement (ξ).
(c) Show that entropy of mixing of a binary mixture attains maxima at equal moles of the components. What is the physical significance of partial molar quantities? $\quad 3.5+1.5=5$
(d) Define Normalised wave function. The wave function of a particle moving within a box of length L is given by $\psi_{n}=A \sin \frac{n \pi x}{L}$. Find the value of A. $1+4=5$
3. Answer any one question of the following:
$10 \times 1=10$
(a) (i) Define equivalent conductance. Mention its unit in S.I. system.
(ii) The specific conductance of a solution of NaCl in water decreases with dilution while the equivalent conductance increases with dilution. - Explain.
(ii) The crystallographic radii of Na^{+}and Cl^{-}are 95 pm and 181 pm . Estimate the ion conductivities using Stokes's law ($\eta=0.89 \times 10^{-3} \mathrm{~Pa} \mathrm{~s}$). Could Walden's rule be used for hydroxide ion?
(iii) Explain abnormal transport number with suitable example.

$$
(1+1)+2+(3+1)+2=10
$$

(b) (i) What is Compton effect?
(ii) Show that the operators of position and x-component momentum are not commuting. Mention its physical significance.
(iii) Construct the Hamiltonian operator for particle in a one dimensional box of length
L. Hence derive the expression of energy and normalize the wave function.

$$
1+(2+1)+(3+3)=10
$$

